Shoe cushioning, body mass and running biomechanics as risk factors for running injury: a study protocol for a randomised controlled trial
نویسندگان
چکیده
INTRODUCTION Repetitive loading of the musculoskeletal system is suggested to be involved in the underlying mechanism of the majority of running-related injuries (RRIs). Accordingly, heavier runners are assumed to be at a higher risk of RRI. The cushioning system of modern running shoes is expected to protect runners again high impact forces, and therefore, RRI. However, the role of shoe cushioning in injury prevention remains unclear. The main aim of this study is to investigate the influence of shoe cushioning and body mass on RRI risk, while exploring simultaneously the association between running technique and RRI risk. METHODS AND ANALYSIS This double-blinded randomised controlled trial will involve about 800 healthy leisure-time runners. They will randomly receive one of two running shoe models that will differ in their cushioning properties (ie, stiffness) by ~35%. The participants will perform a running test on an instrumented treadmill at their preferred running speed at baseline. Then they will be followed up prospectively over a 6-month period, during which they will self-report all their sports activities as well as any injury in an internet-based database TIPPS (Training and Injury Prevention Platform for Sports). Cox regression analyses will be used to compare injury risk between the study groups and to investigate the association among training, biomechanical and anatomical risk factors, and injury risk. ETHICS AND DISSEMINATION The study was approved by the National Ethics Committee for Research (Ref: 201701/02 v1.1). Outcomes will be disseminated through publications in peer-reviewed journals, presentations at international conferences, as well as articles in popular magazines and on specialised websites. TRIAL REGISTRATION NUMBER NCT03115437, Pre-results.
منابع مشابه
The Myth of Running Shoe Cushioning
The advent of the “Running Boom” in the late 1970’s coincided with the introduction of the first “technical” running shoe products incorporating cushioned soles and features intended to stabilize the foot during ground contact. The sensation of comfort provided by cushioned running shoes appears to have facilitated the participation of many “joggers” who would otherwise not have taken up the sp...
متن کاملThe Effect of Body Mass on the Shoe-Athlete Interaction
Long-distance running is known to induce joint overloading and elevate cytokine levels, which are the hallmarks for a variety of running-related injuries. To address this, footwear systems incorporate cushioning midsoles to mitigate injurious mechanical loading. The aim of this study was to evaluate the effect of athlete body mass on the cushioning capacity of technical footwear. An artificial ...
متن کاملThe long-term effect of minimalist shoes on running performance and injury: design of a randomised controlled trial
INTRODUCTION The outcome of the effects of transitioning to minimalist running shoes is a topic of interest for runners and scientists. However, few studies have investigated the longer term effects of running in minimalist shoes. The purpose of this randomised controlled trial (RCT) is to investigate the effects of a 26 week transition to minimalist shoes on running performance and injury risk...
متن کاملHeel strike angle and foot angular velocity in the sagittal plane during running in different shoe conditions
In this study, alterations of heel strike angle (HSA) and plantarflexion velocity (PFV) in the sagittal plane due to wearing different shoe conditions was examined. By this, adaptation in running style as a mechanism of shock attenuation should be investigated. Methods Twenty-four male, injury-free recreational runners (age: 24.8 ± 2.5 years, height: 177.7 ± 5.8 cm, weight: 73.1 ± 7.1 kg) parti...
متن کاملEffects of two neuromuscular training programs on running biomechanics with load carriage: a study protocol for a randomised controlled trial
BACKGROUND In recent years, athletes have ventured into ultra-endurance and adventure racing events, which tests their ability to race, navigate, and survive. These events often require race participants to carry some form of load, to bear equipment for navigation and survival purposes. Previous studies have reported specific alterations in biomechanics when running with load which potentially ...
متن کامل